
Formhandler Backend - formhandler_backend Formhandler Backend

Formhandler Backend

Extension Key: formhandler_backend
Language: en
Version: 0.1.0
Keywords: forEditors, forAdmins, forIntermediates
Copyright 2006-2016, Michel Baeriswyl, <formhandler@pragmas.ch>
Idea and sponsoring: Urs Bräm <info@ursbraem.ch>

This document is published under the Open Content License
available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3
- a GNU/GPL CMS/Framework available from www.TYPO3.org

1

Formhandler Backend - formhandler_backend Formhandler Backend

Table of Contents
Formhandler Backend.............................1

Introduction...3
What does it do?..3
Screenshot...3

Users manual...5
Add a form...5
Pretemplate selection and form redirection........5
Configure the form-to-mail.................................5
Add and edit form fields.....................................7
Add and edit field options...................................8

Work with multiple languages............................9
Administration...10

How does it work?...10
Pretemplate adaptations..................................10

Configuration...14
Installation..14
Static Data...14
Extension configuration....................................15

Known issues...18
ChangeLog..19

About this manual
If you want to know, what this extension is good for and if you want to get convinced, that you
need it, read the chapter Introduction.

If you want to install the extension or if you need to configure and extend it to fit your own
development needs, read the chapter Configuration.

If you want to adapt form pretemplates, the base for frontend forms, you find the necessary
information in the chapter Administration.

If you want to add a form to your website and need information about how the backend-display
works, read the chapter Users manual.

2

Formhandler Backend - formhandler_backend Introduction

Introduction
What does it do?

Formhandler Backend is a pragmatic addition to the powerful “Formhandler” TYPO3 Extension.
It adds a user friendly backend plugin to add and edit forms in a way editors are used to.
Formhandler Backend relies on so-called pretemplates, which should be provided and edited by
administrators. A pretemplate contains the basic structure and functional definition of a form.
Thus, it moreover offers administrators to realize complex forms and to use the waste flexibility
of the Formhandler Extension.

It assembles the dynamic form data from the editor backend into the pretemplate definitions from
the integrator and creates a new template set, which is finally displayed in the TYPO3 Frontend.
It covers issues like multi-step forms, multilanguage forms, form validation, initial form values
and of course, it provides structure and layout for the different field types that are normally used
in forms. Though developed on TYPO3 4.5 LTS, it is also compatible with extbase TYPO3-
Versions.

Use cases for Formhandler Backend:

• You want your users to edit and create forms, but prefer to rely on the customiseability of
formhandler instead of other form extensions.

• You have a basic set-up for various forms on a site / in an extension. There are fields that
are always the same - and there are fields the editors should be able to modify. For
example: create a multistep registration form for different types of events. One part is
dynamic (maybe there are fields for the number of persons, for food preferences etc) and
is created in the backend. The other part contains the registrant's address data and is the
same for all events (this, you prepare in the pretemplate so the editor doesn't have to
bother with it).

Screenshot
For each "dynamic" region in formhandler_backend there is a ###dynamic_xyz### marker in the
plugin where editors can create new fields:

3

Formhandler Backend - formhandler_backend Introduction

Upon saving of the plugin, a new formhandler typoscript template is created - reflecting the
changes made in the backend.

The handling of the form on the website is processed by formhandler alone (based on that
generated template) without interference of formhandler_backend.

4

Formhandler Backend - formhandler_backend Users manual

Users manual
Add a form

To add a new form to a page, you can add a new content element. Select the plugin
“Formhandler backend”.

Enter a header as requested in the tab “General”. Save the form, before you switch to the tab
“Plugin”.

Pretemplate selection and form redirection
Next you can select among the available pretemplates. Pretemplates offer the basic structure
and definitions of a form. After selection, the form is automatically saved and refreshed.

If you want to redirect the user to a confirmation page after he has successfully submitted the
form, enter a redirection page. If redirection isn't defined, no redirection will take place after
submission of the form. Switch to the tab “Email”.

Configure the form-to-mail
There are 2 email sections that can be configured. If they are not configured, no email is sent
after form submission. The first section is to send an email to the user that submitted the form,
the second section deals with the email sent to an administrator.

5

Formhandler Backend - formhandler_backend Users manual

User Email
The first line in the user email section defines the email-address, from which the email is sent to
the user. The second line defines the form field in the frontend form, which will contain the user's
email-address. The third line contains the email subject. In the email text area, you can use text
and markers.

• The marker ###dynamic### will list all user submitted fields that you add to the form. Other
fields, which might be present in the pretemplate, are not considered. You can add them
separately (see below).

• The marker ###value_X### can be used to send the submitted value of a named field. The
field name should replace the X.

• Moreover you could use labels like ###LLL:X###, where X stands for the label of field X.

Admin email
Similar to the user email, the admin email section has a sender email address, a receiver email
address, an email subject and a text part, that is submitted to the administrator. In the text part,
the same markers can be used as in the user email section.

6

Formhandler Backend - formhandler_backend Users manual

Add and edit form fields
Switch to the tab “Edit form”.

If the tab appears empty, save the plugin and re-open the tab.

According to the selected pretemplate, one or more form sections appear in the tab “Edit form”.
In all these sections, form fields can be added, edited, moved and deleted. There are generally
two types of form fields, such with one value like input fields, textareas, checkboxes, buttons and
helptext. Or such with a group of values like selects or radio groups. If you select a field type, the
display changes automatically, showing only the possible necessary and optional parameters. A
field label is allways mandatory and on most fields, there should be a field name as well. Once
refreshed you might have to reopen the new field by clicking on its title “[No title]”.

Lets first consider the single value fields on the sample of input fields.

• Don't consider the language select if you are working in the default language (it's only
displayed for translation reasons).

• Enter a field label.

• Enter a field name. The field name has to be unique for the form. Only small letters and no
whitespace and special characters are allowed.

• You can add a helptext and an initial value if you want.

• Choose one or more field validations.

7

G

Formhandler Backend - formhandler_backend Users manual

Add and edit field options
If you choose a group type field, you have to enter options. Add and edit options the same way
like fields. With options, there is only the label and the value. As field names, option values
should be in lower case letters and without whitespace, provide unique values for each form

8

Formhandler Backend - formhandler_backend Users manual

Update System Cache
Formhandler Backend forms are integrated through file templates. This requires to clear the system cache
after you changed and saved the form in the backend.

In Typo3 Version 6.2, system cache isn't available in a standard installation. Therefore you need to display
the system cache flush function. You have to set “options.clearCache.system = 1” in the user TSconfig.

(see http://kronova.net/tutorials-codeschnipsel/typo3/typo3-flush-system-caches-aktivieren.html)

Work with multiple languages
First build the form in the default language, then translate it
Due to TYPO3-IRRE restrictions, we can only offer an easy translation of a complete content element. By
doing so, you get all relations and necessary sys-language selections properly done. Therefore we, strongly
recommend to build the complete form in the default language before you translate the content element
into other languages.

Before you can translate a content element in TYPO3, remember that you need to have the sys-languages
on the site root (normally your administrator configures this for you) and the translation of the page itself
into the requested other languages. To translate the content form, use the “copy default content elements”-
button in the TYPO3 page-module.

Another thing that is necessary for multiple languages support, is that your administrator has
extended the pretemplate-language file with additional language markers (see Adding multiple
languages).

Due to some programming restrictions, after saving a translation, you have to go back to the
original language and save the plugin again (see "Known issues").

Adding fields or options after translation
It is possible to add fields or options in other languages after the content element of the form has already
been translated before, but some manual work is required. Please fulfill the following steps:

1. Add the field or option in the default language as usual. Save the default content element.

2. Add the same field or option in all other languages at the same position. Enter field label and
name (the field name is irrelevant in translations though mandatory - so use the same you
used in the original language) for a field, enter option label for option.

3. Change the fields/options language selection to the corresponding language of the content
element. Save the translated content element.

9

G

Formhandler Backend - formhandler_backend Users manual

4. Now reopen to the newly added field/option in the translated content element and select the value
field/option from the original language. Save the translated content element again.

10

Formhandler Backend - formhandler_backend Administration

Administration
Reducing complexity for the user and adding flexibility for the administrator is a hard task. Within this
extension we tried to keep all as simple and beautiful as possible. Considering the limits of TYPO3, we
rely on different ways of problem solving. So you might find the solution to your administration needs in
installation configuration, in adding template-entries into the field type and validation database tables
(both described in Chapter Configuration), or you find it in this chapter, were we describe how
you can add a form to a page, how to configure and translate this form and how to deal with
pretemplates.

How does it work?
After installation of the extension, import of the static database data and updating the extension
configuration, the plugin “Formhandler backend” is directly available as new plugin content element. You
don't have to include any static templates to your site template. By adding the plugin to a page, you
provide a backend form management tool, that automatically integrates into a formhandler plugin that
displays the defined form in the frontend. How does this work and where can you take changes? First of
all, this extension is an addon for the formhandler-extension. It does only work, if “Formhandler” is
already installed.

Formhandler backend is a one-way template editor, that stores dynamic form data in the database and
assembles the form-templates in the file-system. So-called pretemplate files are completed with form data
from the TYPO3-backend and stored in the upload-folder. The plugin generates as well sys-template-
typoscript, which integrates the configuration- and template-filesinto of the form into the plugin content
element. If you want to take direct changes on the templates, you should allways work with the
pretemplates. The assembled files in the upload-folder are overwritten every time the plugin is saved in the
backend.

In the folder EXT:formhandler_backend/res/samples/ we provide two samples for pretemplates, a simple
form and a fullfledged form. The simple form as well is available in the folder
EXT:formhandler_backend/res/pretemplates/. After installation, the simple form is available in the
formhandler backend plugin. The samples are based on http://examples.TYPO3-formhandler.com/start/.
So it is a good idea to have a look at this link, if you want to create another pretemplate from scratch for a
specific need. You can as well upgrade the existing samples. Simple form is intended for bottom up
construction, fullfledged form should be reduced top down. Simple form can work as an out-of-the-box
form-to-email tool without any adaptations, fullfledged form provides a sample, how pretemplates should
be constructed and isn't intended for a direct use. Or you can change the extension configuration
“pretemplates” (see Extension configuration) to the sample-folder to play with the provided
samples.

If you want to use formhandler backend as a template editor, you could export the generated template-
folders and the form-integration-typoscript, transfer both to another site, there you don't even need to have
the formhandler backend extension installed (see Exporting created forms (backup to
formhandler)).

Pretemplate adaptations
To get an overview of the file structure in the pretemplates folders, please check the chapter
Extension configuration.

11

http://examples.typo3-formhandler.com/start/
http://examples.typo3-formhandler.com/start/

Formhandler Backend - formhandler_backend Administration

Fieldset sections
Edit the file html/template.html. Every section with a set of fields, that can contain dynamic form
data, is marked with a marker like ###dynamic_XY###. XY is the name of the section. It has to
be unique for the form. Formhandler backend creates a set in the backend form, after a
pretemplate form has been selected by the user and the plugin content element is saved. The
set is an IRRE-element, so the user can freely add fields, options, select validations or change
the field types within a section.

Adding multiple step forms
Edit the file html/template.html in the corresponding pretemplate folder. For multiple step forms you need
templates for every step. According to the formhandler way of dealing with this issue you can add
template code within brackets like

<!-- ###TEMPLATE_FORM1### -->
<form action="###REL_URL###" method="post" class="yform columnar" id="###fieldname###"
enctype="multipart/form-data" >
 ###HIDDEN_FIELDS###
 <h2>###LLL:label_fieldset###</h2>
###dynamic_firststep###
<div class="type-button">
 <input type="submit" ###submit_nextStep### class="button submit" value="###LLL:next###" />
</div>
</form>
<!-- ###TEMPLATE_FORM1### -->

<!-- ###TEMPLATE_FORM2### -->
<form action="###REL_URL###" method="post" class="yform columnar" id="###fieldname###"
enctype="multipart/form-data" >
 ###HIDDEN_FIELDS###
 <h2>###LLL:label_fieldset###</h2>
###dynamic_secondstep###
<div class="type-button">
 <input type="submit" ###submit_nextStep### class="button submit"
value="###LLL:submit###" />
</div>
</form>
<!-- ###TEMPLATE_FORM2### →

and so on. ###dynamic_firststep### will contain the first section of fields,
###dynamic_secondstep### the section section.

Please also check the ts-setup.txt file to add default values and validators markers (see Fehler:
Referenz nicht gefunden).

Adding static form fields
As you can see in the template sample for multiple step forms, you are free to add static form fields
directly into the pretemplate file, like we have done with the next- and submit-button. The static fields are
allways displayed in the form, no matter what dynamic fields the user added. You don't need any static
form field, only the form start and end code is required in the template file, even the submit button could
by added dynamically by the user.

To give you a sample on how to add static form fields, we use the mastertemplate-way this time. It's nicer
to reuse template-code, the static field-replacements are located in the file html/mastertemplate.html. Edit
the file html/template.html in the corresponding pretemplate-folder.

<!-- ###TEMPLATE_FORM1### -->
###master_form-start_contact###
 ###master_section-start###

###master_input_firstname###
###master_input_lastname###
###master_input_birthday###
###dynamic_address###
###master_textarea_message###

12

Formhandler Backend - formhandler_backend Administration

 ###master_section-end###
###master_form-end###
<!-- ###TEMPLATE_FORM1### →

As in multiple step forms, dynamic form parts (here address) can be added everywhere within a
form and there could even be multiple set sections within one form.

Adding formhandler-tools
The “Formhandler”-extension, on whichs top formhandler backends builds, offers many very flexible
configuration and data treatement tools. You can add and use any of this tools. Please check the
formhandler-documentation for any details http://www.TYPO3-formhandler.com/documentation/getting-
started/. You might as well check the way we integrated some of these tools in the fullfledged form
sample. In this form-pretemplate we provide a multiple steps, multiple language form with actions like file
upload, database storage and auto-db addition of dynamic user-added fields.

Edit the file ts/ts_setup.txt in the corresponding pretemplate-folder. For formhandler backend to work
properly, there have to be the following markers in the following places:

• ###dynamic_defaultValues_X###: This dynamic section covers the typoscript-entries for default
field values. X stands for form number. If you don't have a multistep form, it should be 1, on
multistep forms, every step should have such a marker with X replaced by the number of the step.
The marker(s) should be placed at
plugin.Tx_Formhandler.settings.predef.[formname].preProcessors {
 1.class = Tx_Formhandler_PreProcessor_LoadDefaultValues
 1.config {
 1 {
###dynamic_defaultValues_1###
 }
// 2 {
//###dynamic_defaultValues_2###
// }
// ...
 }
 }

• ###dynamic_validators_X###: This dynamic section covers the typoscript-entries for field
validators. X stands for form number. If you don't have a multistep form, it should be 1, on multistep
forms, every step should have such a marker with X replaced by the number of the step. The
marker(s) should be placed at
plugin.Tx_Formhandler.settings.predef.[formname] {

1.validators {
1.class = Validator_Default
1.config.fieldConf {

###dynamic_validators_1###
}

}
// 2.validators {
// 1.class = Validator_Default
// 1.config.fieldConf {
//###dynamic_validators_1###
// }
// }
// …
}

Adding multiple languages
Formhandler backend offers multiple language support. To have consistent field names, all basic field data
is covered by the default language entry. Only labels and messages are translated into other languages.
This makes it a bit hard to update a form in an other language after a fundamental change of the form
structure. But form-extensions like db-storage are kept consistent for all languages. There are two things to
consider when we translate a form: the plugin content element and the lang.xml-file of the pretemplate.

13

http://www.typo3-formhandler.com/documentation/getting-started/
http://www.typo3-formhandler.com/documentation/getting-started/
http://www.typo3-formhandler.com/documentation/getting-started/

Formhandler Backend - formhandler_backend Administration

For the plugin content element, the easiest way to deal with multiple languages is to build the
dynamic part of the form in the default language, then to translate the content element into the
other languages. All sys_language references are then automatically added in the correct way. If
the form structure changes after translation, and new fields or options have to be added, there is
a workaround described in Adding fields or options after translation. This workaround is
necessary due to IRRE restrictions in TYPO3.

Edit the lang/lang.xml in the corresponding pretemplate-folder. In this file, formhandler provides all labels
and messages of a form. If you have static fields you should enter labels in this file. As well you should
edit error messages, e.g. those which are generated by the field validations. All dynamic field and option
texts are automatically added to this file.

Therefore, the following markers and positions are required:

• ###dynamic_default###: this marker covers the default language. It should be between the
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<T3locallang>

<meta type="array">
<description>Language labels for Fullfledged Form</description>

</meta>
<data type="array">

<languageKey index="default" type="array">
###dynamic_default###

</languageKey>
</data>

</T3locallang>

• ###dynamic_X###: this is the marker for the any other language. The X must correspond to the sys-
language shortcut (like en,de,it,fr,…). Place the marker(s) in the above xml-code as follows:

<languageKey index="default" type="array">
###dynamic_default###

</languageKey>
<languageKey index="de" type="array">

###dynamic_de###
</languageKey>
…

Exporting created forms (backup to formhandler)
Once a form has been edited created, you might want to backup the form configuration or copy it to
another website. The explicit backup of a formhandler backend plugin requires the form configuration
folder to remain on its proper path and a dump of the database tables. The described workaround is
intented for an implicit export a form and integrate it on the same or another website by the means of the
formhandler plugin only.

To export a form you should consider the form configuration folder and the sys-template typoscript. The
configuration folder is stored with all necessary files recursively in the directory
uploads/tx_formhandlerbackend/templates/. You find the folders including the name of the pretemplate,
which was used to build the form and the id of the content element, that represents the form. The folder
name can be changed and it can be placed wherever you want within the TYPO3-installation. To backup,
just zip the folder of the wanted form.

Once you have the form configuration folder in your TYPO3-installation, you need to add the following
includes to on of your sys-templates above the page, where you need the form:

constants
<INCLUDE_TYPOSCRIPT: source='FILE:/[path to form configuration folder]/ts/ts_constants.txt'>
setup
<INCLUDE_TYPOSCRIPT: source='FILE:/[path to form configuration folder]/ts/ts_setup.txt'>

After that you can simply add a formhandler plugin and select this configuration in the plugin-tab of the
content element.

14

file:///C:/Users/Michel%20Baeriswyl/AppData/Local/Microsoft/Windows/%5Bpath
file:///C:/Users/Michel%20Baeriswyl/AppData/Local/Microsoft/Windows/%5Bpath
file:///C:/Users/Michel%20Baeriswyl/AppData/Local/Microsoft/Windows/%5Babs

Formhandler Backend - formhandler_backend Administration

15

Formhandler Backend - formhandler_backend Configuration

Configuration
Installation

At installation, make sure you update the extension twice: once for the "Database update" (in
order to import the database tables with the required data for field types and field validation
types) and once for the "Configuration" update to add the initial extension configuration to
localconf .

Installation is simple and you don't have to add any static template to add the formhandler
backend to the plugin list of the content elements.

Static Data
The types and validations are suggestions and correspond to the normal needs by building a
form. You can use your own type-set and validation-set or you can change the suggested types
or add your own field types and validations to the database. If you want to do so, you should not
forget to unselect the boxes to not import the static data and to not overwrite your changes.

The following data and markers must be provided in these two tables:

Field types static data
Simplified, we can speak of form fields in two ways. First, there are single types like a text field, a
checkbox or a submit button. For these fields, we need to provide a template wrap for the form
and the email with the following markers (some are optional):

• ###fieldname### will be replaced with the field name.

• ###LLL:###fieldname###### is the formhandler notation for the label of a field. The label
will be added dynamically to the language-file and offers multilanguage support.

• ###is_error_###fieldname###### defines a place, where a possible error mark as defined
in typoscript-config (ts/ts_setup.txt) will be displayed. This marker can be used for adding a
class to the field wrap.

• ###required_###fieldname###### defines a place, where a possible required distinction as
defined in typoscript-config (ts/ts_setup.txt) will be displayed. Normally, an asterix is used
for this intention. The option “required” itself is defined in the validations.

• ###error_###fieldname###### defines a placeholder for the error message as defined by
the form validations.

• ###formValuesPrefix### is the prefix for the form as defined in typoscript-config
(ts/ts_setup.txt)

• ###value_###fieldname###### corresponds to the value of the field. The predefined value
or the submitted value will be displayed in this placeholder.

• ###LLL:###fieldname###.notice### is a placeholder for the helptext.

• ###LLL:###fieldname###.validation### is a placeholder for html5-additions as defined by
the form validations, could be used for jquery-additions as well.

Second, there are multiple field types like radiobuttons or selectorboxes. For those fields, there is
moreover an option part, which consists of the following markers:

16

G

Formhandler Backend - formhandler_backend Configuration

• ###options### define a placeholder for the options in the main template part of a field (see
above).

• ###value### is the placeholder for the value of an option.

• ###LLL:###fieldname###.###option###### is the placeholder for the label of an option.
The label will be added dynamically to the language-file and offers multilanguage support.

• ###selected_###fieldname###_###value###### or
###checked_###fieldname###_###value###### are the placeholders for the selected or
checked statement. The predefined value or the submitted value will be considered in this
placeholder.

Field types implement a different amount of parameters to be filled by the backend user. That's
why we change the backend-display according to the field type. If you add more field types or
change the extensions-field-types, you should also think to upgrade the TCA-definition for
'tx_formhandlerbackend_field'. You could add the following array-item to
EXT:formhandler_backend/tca.php

$TCA['tx_formhandlerbackend_field']['types'][X] = array('showitem' =>
'sys_language_uid;;;;1-1-1, l18n_parent, l18n_diffsource, hidden;;1, is_type, label, name,
instructions, value, options, validation, fieldset');

Where X represents the uid of the added tx_formhandlerbackend_type-element. You can remove
parameters according the need of the specific field type, but at least there should be all language
fields, is_type, label, name, fieldset.

Template parts for dynamic field types and field validations are not taken from the pretemplate's
formhandler mastertemplate, but are added in the backend as records. By default, they are both
saved on the site root page with id 0.

Field validations static data
Forms can be validated server- and/or client-side with Formhandler Backend. Validations
consists of a name to recognize them.

For server side validation, Formhandler Backend fully relies on the formhandler engine, see
http://www.TYPO3-formhandler.com/documentation/error-checks/. Serverside validation is
dynamically added to the validation-marker in ts/ts_setup.txt. According to the formhandler
engine there is a field for first level typoscript and a multiple lines field for second level typoscript.

For clientside validation, there is a validation field that represents HTML5 or jQuery validation as
well. The content of this field is displayed in the field type marker
###LLL:###fieldname###.validation###, which is stored in lang/lang.xml. We suggest to use the
simpler html5-validation, because it doesn't depend on a further javascript library. If you need
javascript validation, try http://ericleads.com/h5validate/ which allows to validate forms with
jQuery based on HTML5 markup alone.

Multiple field types and validations in one installation
With a normal installation, the field types and validations are located at site root, means on page
with id=0.

In case that you have different form types or different sites in one installation, that require
different field types and validations or different types of markers and wrap arrangements for form
fields, we added the possibility to change or multiply the storage location of the field types and
validations. If you want to do so, you will have to change the TCA first (EXT:tca.php), set the

17

G

http://www.TYPO3-formhandler.com/documentation/error-checks/
http://www.TYPO3-formhandler.com/documentation/error-checks/
http://www.TYPO3-formhandler.com/documentation/error-checks/

Formhandler Backend - formhandler_backend Configuration

rootLevel of the tables tx_formhandlerbackend_type and tx_formhandlerbackend_validation to 0:
$TCA['tx_formhandlerbackend_type']['ctrl']['rootLevel'] = 0;
$TCA['tx_formhandlerbackend_validation']['ctrl']['rootLevel'] = 0;

You could store field types and validations on multiple pages. To control, which location is
considered, use the page-ts-config variables:

TCEFORM.tx_formhandlerbackend_field.is_type.PAGE_TSCONFIG_ID = uid
TCEFORM.tx_formhandlerbackend_field.validation.PAGE_TSCONFIG_ID = uid

Where uid represents the page-id, where the field types and validations are stored. As you can
see, you can control field types and validations seperately.

Extension configuration
Further on, you can adapt the following properties in the configuration of the extension (by using
the extension manager):

Property: Description: Default: Data type:

pretemplates Pre-templates directory.
Directory where pre-templates are stored

EXT:formhandler_backend/res/
pretemplates/

path

ts-contants Relative path to typoscript-constants file.
Path to file starting from pretemplate
subfolder. Has to be consistent, if you
install different pretemplates.

ts/ts_constants.txt path

ts-config Relative path to typoscript-config file.
Path to file starting from pretemplate
subfolder. Has to be consistent, if you
install different pretemplates.

ts/ts_setup.txt path

html-template Relative path to html template-file.
Path to file starting from pretemplate
subfolder. For multistep forms, all form-
templates have to be stored in one file. Has
to be consistent, if you install different
pretemplates.

html/template.html path

mailuser-template Relative path to user-email-template file.
Path to file starting from pretemplate
subfolder. Has to be consistent, if you
install different pretemplates.

html/email-user.html path

mailadmin-template Relative path to admin-email-template file.
Path to file starting from pretemplate
subfolder. Has to be consistent, if you
install different pretemplates.

html/email-admin.html path

lang-template Relative path to typoscript-config file.
Path to file starting from pretemplate
subfolder. Has to be consistent, if you
install different pretemplates.

lang/lang.xml path

templates Templates directory.
Directory where templates are copied to
(must exist)

uploads/tx_formhandlerbackend/
templates/

path

marker Marker for dynamic parts in pre-template
files

###dynamic### text

email_html_dynwrap Email-wrap: Overall wrap for dynamic part
in html-emails

<table>|</table> text

18

Formhandler Backend - formhandler_backend Configuration

Property: Description: Default: Data type:

email_html_wrap Email-wrap: Wrap for textparts in html-
emails

<p>|</p> text

sys_template_write Automatic frontend-integration.
Should we create or write directly into the
sys_template entry on the page, where the
configuration folder is located? This feature
is required for an automatic frontend-
integration.

TRUE boolean

Normally, you won't need to change any of these configuration parameters. The paths of the
pretemplates and templates directories are needed to let the extension know, in which directory
should be searched for pretemplates and to which directory the assembled templates should
recursively be copied. The path parameters describe the relative file structure of those files.

The email-wraps are applied to html-mails. There is an overall wrap and a wrap for the single
text-entries in the mail.

A configuration value that needs attention is the marker ###dynamic###. This marker points to
all different dynamic parts in the pretemplate files. The extension searches and replaces these
markers with dynamically generated html, xml and typoscript. If you change the marker
configuration, don't forget that the first part (stem) of the markers described in the following
should be adapted in the pretemplate files correspondingly.

For different template parts, there are some additions to the stem of the marker:

• ts_setup.txt: In typoscript, we add default values and validators of a form. Therefore, the
second part of the marker is either defaultValues or validators. Then, for multiple forms, the
third part of contains the number of the form. For on step forms, we just add a 1. Thus we
get ###dynamic_defaultValues_1### and ###dynamic_validators_1### for simple forms.

• template.html: In the html-template, we need to add an unique section name as second
part of the marker like “fields” resulting in ###dynamic_fields###. The extension allows
multiple dynamic formfield parts. Every section should be present in the html-template.

• email-user.html and email-admin.html: In both mail-templates there is plaintext part marked
with ###dynamic_plain### and a html part marked with ###dynamic_html###.

• lang.xml: For multilanguage forms, the second part of the dynamic markers in the
locallang-file should consist of the language-key. In a single-language environments with
the language-key “default”, the marker ###dynamic_default### results. After adding a
language like german or french to the default language, this would request
###dynamic_de### or ###dynamic_fr###, capsuled in the necessary xml of course.

You will find samples for all possibilities in the fullfledged form provided by the extensions
samples itself.

To integrate a form configuration into a frontend-plugin, we need to add typoscript to a sys-
template. If you select automatic integration, the necessary sys-template with the typoscript is
either generated or added to the extension-sys-template on the page that contains the plugin. If
you don't want this function and add the typoscript manually, you can disable this function.

19

Formhandler Backend - formhandler_backend Known issues

Known issues
So far we tell you one difficulty and two security warnings:

• The form configuration data is stored directly only in the default language. If you work with
translations, you need to save the translated content elements. To make your changes
come true in the frontend, you thereafter have to save the plugin in the default language
again.

• To write the template files, we made use of non-TYPO3-functions. This makes it possible
to write files regardless of the TYPO3-file-permissions of the user. There was no way to
construct the extension on another base, storage would only work for administrators.

• It is impossible to check all impacts to already existing sys-templates on the page, where
the plugin content element is added to. Therefore we offer the extension configuration
parameter to add the necessary typoscript manually.

If you make experience with or find a solution to these problems please report them to us. If you
find other issues, please report them as well. Please report anything to our TYPO3 Forge
(http://forge.TYPO3.org/projects/extension-formhandler_backend/issues).

20

http://forge.typo3.org/projects/extension-formhandler_backend/issues
http://forge.typo3.org/projects/extension-formhandler_backend/issues

Formhandler Backend - formhandler_backend ChangeLog

ChangeLog
The following is an overview of the changes in Formhandler Backend. For more details, see the
online ChangeLog (http://forge.TYPO3.org/projects/extension-formhandler_backend/roadmap).

Version: Changes:

0.1.0 Initial public release.

0.1.1 Typo3 6.2 compatibility.
Allow option field values in capital letters.

21

http://forge.typo3.org/projects/extension-formhandler_backend/roadmap
http://forge.typo3.org/projects/extension-formhandler_backend/roadmap

	Formhandler Backend
	About this manual
	Introduction
	What does it do?
	Screenshot

	Users manual
	Add a form
	Pretemplate selection and form redirection
	Configure the form-to-mail
	User Email
	Admin email

	Add and edit form fields
	Add and edit field options
	Update System Cache
	Formhandler Backend forms are integrated through file templates. This requires to clear the system cache after you changed and saved the form in the backend.
	In Typo3 Version 6.2, system cache isn't available in a standard installation. Therefore you need to display the system cache flush function. You have to set “options.clearCache.system = 1” in the user TSconfig.
	(see http://kronova.net/tutorials-codeschnipsel/typo3/typo3-flush-system-caches-aktivieren.html)
	Work with multiple languages
	First build the form in the default language, then translate it
	Adding fields or options after translation

	Administration
	How does it work?
	Pretemplate adaptations
	Fieldset sections
	Adding multiple step forms
	Adding static form fields
	Adding formhandler-tools
	Adding multiple languages
	Exporting created forms (backup to formhandler)

	Configuration
	Installation
	Static Data
	Field types static data
	Field validations static data
	Multiple field types and validations in one installation

	Extension configuration

	Known issues
	ChangeLog

